VOLUME 74, NUMBER 22

PHYSICAL REVIEW LETTERS

29 MAY 1995

Invariant Measure and Turbulent Pinch in Tokamaks
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It is shown that electron transport due to a generic low-frequency electrostatic turbulence in tokamak
geometry results in the relaxation to a peaked, self-sustained plasma density profile no(r), rather than
to a diffusion-induced flat distribution. The relaxed density profile depends on the magnetic geometry
and the distribution of turbulence. The associated inward pinch velocity V, = DV Inng results from the
competition of the turbulent diffusion of trapped electrons over the poloidal magnetic flux coordinate
and the collisional relaxation toward a Maxwellian distribution function.
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Experiments show that particle and energy transport
in tokamaks cannot be described in terms of diffusion
alone. The necessity of introducing nondiffusive, e.g.,
convective, fluxes is most transparent from the fact that
plasma is confined in the absence of core particle sources
and in the presence of a negative radial density gradient
dn/dr. A standard phenomenology describes the steady-
state particle flux I" as a sum of a diffusive term and a
convective term: I" = —Ddn/dr + nV,, where D is the
diffusivity and V, is the radial pinch velocity. Dynamic
experiments [1] show the same behavior.

The mechanism of the particle pinch has long been a
challenge for theory. The neoclassical pinch [2], which
is the radial drift of trapped particles with the velocity
V, = —cE, /By, is insufficient to explain the profile
resilience, because the Ohmic toroidal electric field E,, is
very small (of order 1 V per loop) in a high-temperature
plasma. The tokamak pinch is therefore of an anomalous
(turbulent) nature. Indeed, the typical potential fluctuation
amplitude is tens of V, which might rescale the Ware-
Galeev pinch accordingly. The apparent difficulty of such
an interpretation, namely, that the zero-average turbulent
fluctuations yield no average pinch velocity but only a
diffusion, is resolved by noting that the diffusion is not
in the radial coordinate r but rather in ¢, the poloidal
magnetic flux coordinate. If, as a result of such a
diffusion, the particles were distributed uniformly over ¢,
their Cartesian-space density would be
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mo@) = V1 = fo L.0)d0/B(s.0) . (1)

where V(¢) is the volume inside the flux surface, 6 is
the poloidal angle, L(i,8) = gRB/B,, is the connection
length such that the distance along the magnetic field line
is d€) = Ld#, R(¥,0) is the major radius, g(¢) is the
safety factor, and B(y,0) and B, (i, 6) are the total and
the toroidal magnetic fields, respectively. A flux-uniform
distribution similar to (1) was previously described by
Hasegawa, Chen, and Mauel [3] for a magnetospheric-
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type dipole magnetic field. In the limit of a large aspect
ratio tokamak, Eq. (1) reduces to no(¥)q(yy) = const, as
found by Yankov [4], who introduced the term turbulent
equipartition (TEP) for the result of chaotic mixing under
fixed adiabatic invariants instead of energy.

Although the peaked density profile (1) is qualitatively
consistent with experimental data, it does not quantita-
tively survive the effect of even rare Coulomb collisions,
and the final result [Eq. (12)] turns out more complicated.
We derive the electron transport equations based on a
nonlinear, parallel-motion-average electron response to a
generic low-frequency (less than the electron bounce fre-
quency) electrostatic turbulence. The calculation is per-
formed in a general shaped geometry. The properties of
plasma turbulence are not studied; instead, an analysis is
given of how these properties enter (or do not) the trans-
port equations. One of the main conclusions is that the
tokamak pinch is explained by the turbulent transport of
trapped electrons due to the fluctuating toroidal electric
fields.

Before discussing specific tokamak issues, it is useful to
consider the abstract model of passive turbulent advection
with the velocity

dx/dt = v(x,t) = u(x,)/A(x), V-u=0, (2)

representing a short-scale, incompressible, zero-average
turbulent field u(x,7) modulated by a time-independent
large-scale amplitude 1/A(x). Let the density n(x,?)
of a tracer evolve according to the continuity equation
on/dt + V - (nv) = 0. Then, for n(x,t) = n(x,t)/A(x),
we have dn/dt + (1/AM)u - Vn = 0, and we see that the
distribution 1 = const, or

n = no(x) = A(x) (3)
will not evolve. In general, according to Fick’s law,
an average gradient of 7 will result in the average

flux (n(u/A)) = (nv)/A = —D(x) - V(n), where D is a
turbulent diffusion tensor depending on the properties of
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u. We thus infer the transport (Fokker-Planck) equation
for a passive tracer in a compressible turbulence:

Iy =V -D-Vn)—Vn), V=D:- -Vinr, 4
where V is the average (“pinch”) velocity.

Thus, even in a zero-average, at a given X, turbulent
field (2), the average particle velocity in (4) is not zero,
if the field is compressible. This effect is somewhat
similar to the familiar ponderomotive force experienced
by a particle oscillating in a high-frequency force field.

From the dynamical standpoint, we note that the
time-dependent dynamical system (2) possesses the
time-independent invariant measure A(x)dx, which is
conserved for a volume of points evolving according
to (2). The much stronger property of the relaxation
of the system’s probability distribution function to this
measure is equivalent to the ergodic hypothesis or the
closely related diffusion approximation (4). A necessary
condition for this property is the absence of integrals of
motion in the system. Thus, in order to make the invariant
measure A(x) an attracting solution for the distribution
function, we need to eliminate the integrals by effectively
reducing the dimension of the phase space using the
conserved quantities as new variables. The invariant
measure density is then multiplied by the Jacobian of the
transformation [5].

The simplest example of a nontrivial invariant mea-
sure is given by the two-dimensional chaotic E X B
particle motion in an inhomogeneous magnetic field
B =2B(x,y): x= —(c/B)V¢(x,y, 1) X z, where ¢
is the electrostatic potential of a low-frequency
[w < wp = eB/(mc)] turbulence. The E X B drift
velocity is an incompressible field divided by B, hence,
according to (3), the equilibrium density profile is
no(x,y) « B(x,y). This result can be also verified by
a change of variables from the standard phase space
(x,y,vy,vy) to the guiding-center variables involving
the conserved magnetic moment u = mv?/2B and the
gyrophase «,. Since the Liouville theorem implies
A(x,v) = 1, the guiding-center invariant measure is
Alx,y,ay) = alx,y, vy, vy)/ 9(x,y, m, ) = Blx,y)/m,
as expected. A pinch velocity similar to the one resulting
from this invariant measure, V = D - VInB, was obtained
by Smolyakov, Callen, and Hirose [6].

For a three-dimensional (3D) geometry the parallel
motion and the associated invariants must be included
in our theory. The simplest possible model is the mo-
tion of deeply trapped particles in a large aspect ra-
tio tokamak. According to Ref. [2] and also to Eq. (5)
below, the bounce-average motion of the banana cen-
ter in the tokamak midplane (x,y) can be written as
x = (c¢/Bg)Vd*(x,y,1) X Z, where ¢* = ¢ + (u/e)B is
the effective electrostatic potential. Thus the correspond-
ing equilibrium density is proportional to the poloidal
magnetic field By, or the reciprocal safety factor g. Be-
low we show that, in a general magnetic geometry and for

fol, @o,J, u) = F(J, u).

an arbitrary trapping depth, the bounce average turbulent
drift of a banana particle can be written in the canonical
form

{12’9 ‘PO} = (27TC/€) {84703 481#}8((#7 §0(),J, M, t) B (5)

where ¢ is the poloidal flux labeling a magnetic flux
surface, o9 = ¢ — ()0 labels a magnetic field line in
the surface, ¢ and @ are the toroidal and the poloidal
angles, respectively, J = J(¢, @o. &, i, 1) = $muvy de) is
the conserved longitudinal adiabatic invariant of a trapped
particle, and &(¢, ¢o,J, i, ) is the total particle energy
expressed in terms of J and w. Being incompress-
ible in the (¢, ¢o) plane, Eq. (5) describes a turbulent
relaxation to the (¢, ¢p) uniform particle distribution
The corresponding Cartesian-
space particle density is nonuniform and given by Eq. (1).

The turbulent mechanism of the particle pinch can
be established by deriving the parallel-motion-average
equations of the drift particle motion. Consider the
general magnetic field B possessing flux surfaces ¢(x) =
const:

B =[Vx(y) X VO — Vi X Vop]/2m7, (6)

where ¢ and y are the poloidal and the toroidal magnetic
fluxes and g(¢) = d x/d is the safety factor.

Suppose that the parallel particle motion occurs much
faster than the evolution of the electrostatic potential
¢(x,t). This approximation holds sufficiently well for
electrons and makes it possible to average the electron
drift equations,

x = v[b + (vj/wy)e] — (c/B)V* X b,  (7)

v = —(e/m)Ve¢* - [b + (v)/wp)c], )

over their fast parallel motion. Here v is the parallel
velocity, b = B/B is the magnetic unit vector, and ¢ =
b X (b - V)b is the magnetic curvature. The result of the
averaging depends on the topology of the particle orbit.

Trapped particles.— Although the separation of the fast
parallel motion from the slow cross-field drift and the
averaging of the latter over the former are straightforward
in the magnetic flux coordinates, we will use the well-
known result, which applies to any magnetic field B =
Va X Vi written in the Clebsch coordinates « and .
[Equation (6) implies @ = ¢/27.] In such a field, the
bounce-average drift of a trapped particle takes the form
[71 & = —(c/e)dye, b = (c/e)doe. These equations are
equivalent to (5) and, according to the above discussion,
imply a diffusive random walk of each banana particle
over the ¢ coordinate. The quasilinear diffusion over
¢ was calculated in Ref. [8] but not connected with the
pinch effect.

More explicitly, the bounce-average equation for ¢,

Y =2mcd,d(¢,6,9.1)), ®)
4437



VOLUME 74, NUMBER 22

PHYSICAL REVIEW LETTERS

29 May 1995

shows that the effect is proportional to the orbit-average
toroidal electric field. The poloidal electric field can-
cels with the VB drift upon the bounce averaging and
does not enter the mean radial displacement of the
trapped electrons. For a toroidally symmetrical multival-
ued (modVieep) ¢, Eq. (9) reducqs to the Ware-Galeev
pinch in a general geometry [9], ¢ = —cV)oop, Which is
always inward for an Ohmic loop voltage Vioop. For gen-
eral 3D quasistationary potential fluctuations, Eq. (9) rep-
resents the instantaneous banana drift velocity, which can
have either sign and consequently lead to the trapped par-
ticle diffusion over ¢. Note that, locally, the Clebsch rep-
resentation is also valid for a stochastic magnetic field,
and we analogously infer that the transport of trapped
electrons due to slowly evolving magnetic fluctuations is
also a diffusion over (unperturbed) ¢ .

Passing particles.—The parallel motion of a circu-
lating particle is conditionally (double) periodic, and
we need the technique of conditional-periodic averaging,
cf. [10]. The time average of a function A(¢, 8, ¢) for a
passing particle is defined as

y = L0 de JiTd0 AW, 0. 9L, 0) /01,0, .2)

0" de [i7d0 L, 0)/vi(w. 6, ¢, €)
Upon applying this rule to the drift over ¢ derivable from
Eq. (7), we find ¢ = -choop(Bé/Bz), where an orbit
average is implied. This equation contains no turbulent
fluctuations and is just the E X B drift of passing particles
due to the Ohmic electric field, an effect even smaller than
the typically negligible neoclassical pinch of the trapped
particles.

Thus, to first order in E X B and magnetic drifts in
quasistationary electrostatic fluctuations, there is neither
turbulent diffusion nor pinch of passing electrons. This
can be equivalently expressed as the conservation of the
suitably defined longitudinal adiabatic invariant J for a
passing particle:

1 27 27
J(,e,1) = = j;) dgp]o mu (.0, ¢,e,1)L(0)dO,
(10)

with the coefficient chosen so that J is continuous at the
boundary between the trapped and the passing modes.
According to Eq. (5) for trapped particles and the con-
servation of ¢ for passing particles, the collisionless
electron transport in a turbulent tokamak can be formu-
lated in terms of the diffusion of the distribution func-
tion f(i,J, u,t) (such as the total number of particles is
[ fd dJ du) over the poloidal flux coordinate . The
turbulent diffusivity D¥¥(¢,J, u) is different from zero
only in the trapped region J < J.(¢, u), where it is given
by the time integral of the correlation function of the ran-
dom velocity (9). Thus, as in the neoclassical theory [11],
the trapped particles play the central role in the turbulent
transport. In the quasistatic turbulence, the radial motion
(9) depends only on the extent, but not on the frequency
of the particle bouncing, so the turbulent diffusivity D¥¥
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depends only on ¢ and the pitch-angle variable

T A 7 _ _
- = f_ﬂ@(u B)\2u — B)Ldo, (1)

where O is the step function and u = u(y, j) = /.

The fully relaxed flux-uniform distribution (TEP)
fo(er,J, u) = F(J, ) caused by the diffusion over ¢,
however, is incompatible with the flux-surface-local
Maxwellian distribution function

(i, J, w) = n()T (P expl—e(, J, w)/TW)],

because at no choice of the functions n(y¥) and T(¢)
can f) be made independent of ¢ in the trapped region.
Since the collision time is much shorter than the diffusion
time through the tokamak minor radius, the turbulent
diffusion over ¢ must be considered a small perturbation
to the collisional transport of electrons over the J and
m coordinates. Given the trend towards the flux-uniform
distribution (1), the direction of this perturbation is clearly
toward a peaked density profile.

In the absence of particle sources, the equilibrium
profile of n(y) is determined by the requirement of
the vanishing radial particle flux, [dJ du D% d,fu = 0.
We thus obtain

12 Je ~
2 [Py [ aj D posmew. ., (12)
no(0) 0 0
where D = DY u=32( [ dj DY u=3?)"" is the normal-
ized turbulent diffusivity and j.(¢) corresponds to the
pitch angle of marginal trapping. Equilibrium (12) is
characterized by an electron convection such that the
deeply trapped particles flow inward and the barely
trapped ones flow outward.

For illustrative purposes, assume that D¥¥ is indepen-
dent of j in the trapped region. Then Eq. (12) yields the
following density profile in the large aspect ratio limit
r/R < 1:

no(r) S fr (i + 4 ﬂi) (ﬁ)
no(0) ! R Jo dr 2 3 dinr o R2)
(13)

We see that, to leading order in r/R, this profile is flat,
and peaked only to first order in the inverse aspect ratio.
Note that sharp peak at the magnetic axis, n(0) # 0. This
singularity will be regularized by the so far neglected
(neo)classical diffusion, because the effective turbulent
diffusivity D(r) and the pinch velocity V,(r) both vanish
at the axis in proportion to the fraction of trapped particles,
and the classical electron transport takes over.

As shown in Fig. 1, the density and the safety factor
profiles in Tokamak Fusion Test Reactor (TFTR) show
a reasonably good agreement with formula (13). On the
other hand, the data deviate systematically from the TEP
profile ng = const.
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In conclusion, we have shown that the conservation of
adiabatic invariants in a low-frequency electrostatic tur-
bulence induces an invariant measure, to which the parti-
cle distribution tends to relax on a turbulent transport time
scale. When both invariants x and J are conserved, the
collisionless electron transport materializes itself as a tur-
bulent diffusion, due to the toroidal turbulent electric field,
of trapped particles over the poloidal flux coordinate ¢ and
a much smaller transport of passing particles. In a tokamak
geometry, the relaxation to the flux-uniform profile (1) is
competing with the collisionally established flux-surface-
local Maxwellian distribution, which results in the peaked
density profile (12) depending on both the magnetic ge-
ometry and the distribution of turbulent fluctuations. The
particle flux I' = —Dn¢V(n/no) consists of diffusive and
convective (pinch) parts, the latter involving the gradients
of magnetic geometry, normalized turbulence distribution,
but not electron temperature, because rg is independent of
the temperature profile. It is thereby demonstrated that
turbulent plasma transport is not reducible to the thermo-
dynamic cross fluxes described by the Onsager symmetry
characteristic of collisional transport [13]. In general, tur-
bulent particle and energy fluxes are possible even without
density and temperature gradients [14].

Although transport in stellarators is also anomalous, the
complicated magnetic geometry creates multiple separa-
trices, crossing of which effectively destroys the longitu-
dinal adiabatic invariant [15]. This should significantly
reduce the particle pinch, as confirmed by typically flat
density profiles in stellarators [16].

The ion transport is a more delicate problem, because
the ion parallel motion frequency is comparable with or
less than the mean turbulence frequency. Nevertheless,

in a plasma with few impurities, the quasineutrality
TFTR n and q profiles
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FIG. 1. TFTR profiles (a) of n and g in 35 consecutive shots
41313-46591 documented in the Magnetic Fusion Energy
Database [12] and their comparison with the theory (b): The
ratio of the measured density to the prediction of Eq. (13)
(solid) and the normalized product of ng (dashed).

constraint makes it possible to describe the particle
transport in terms of the electron transport alone. The
kinetic formalism developed in this work predicts density
profiles in good agreement with experiment. A natural
extension of this formalism also predicts the electron
energy pinch [17]. These and related issues will be
discussed in future publications.
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